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TECHNICAL PAPER 

FURTHER DEVELOPMENTS IN EXACT STATE RECONSTRUCTION IN 
DETERMINISTIC DIGITAL CONTROL SYSTEMS 

1. INTRODUCTION 

Books on modem digital control systems usually address the problem of controlling a continuous- 
time plant driven by a zero-order-hold with a sampled output as shown in Figure 1 (for example, see 
Reference 1, p. 126). A common solution to this problem is to reconstruct the state of the system'it the 
sampling instant using a state observer and then feed back the reconstructed state [ l ,  p. 1951. However, 
the state observer has two undesirable characteristics. First of all, it is a dynamical system in itself and, 
hence, adds additional states and eigenvalues to the system, which can affect system stability. Second, as 
a consequence, the reconstructed state is normally an approximation to the true state and is usually not a 
good one early in the state reconstruction process. Recently, Polites developed a new approach to state 
reconstruction which has neither of these problems [2]. Subsequently, he extended this work and 
developed what he called the ideal state reconstructor [3]. It was so named because: if the plant 
parameters are known exactly, its output will exactly equal the true state of the plant, not just approxi- 
mate it. Besides that, it adds no new states or eigenvalues to the system. Nor does it affect the plant 
equation for the system in any way; it affects the measurement equation only. It is characterized by the 
fact that measurements prefiltered by a multi-inputlmulti-output moving-average (MA) process [4] are 
utilized in the state reconstruction process. Now, in this paper, a more-general version of the ideal state 
reconstructor is presented. It allows standard instantaneous measurements to supplement the MA- 
prefiltered ones in the state reconstruction process. Useful in the development of this more-general ideal 
state reconstructor are some results to date for continuous-time plants driven by a zero-order-hold with 
sampled outputs. These are reviewed in Section 11, prior to the development of the more-general ideal 
state reconstructor presented in Section 111. Section IV presents an example which illustrates the proce- 
dure for choosing the parameters in it. Section V contains the conclusions and recommendations. 

Figure 1 .  Continuous-time plant driven by a zero-order-hold 
with instantaneous measurements. 



II. PRELIMINARY 

For the plant in Figure 1 , x(t) is an nxl state vector, u_(kT) is an rxl control input vector, yr(kT) is 
an mxl output or measurement vector, F is an nxn system matrix, G is an nxr control matrix, andCl is an 
mxn output matrix. Since yr(k) = CI_x(k), where k is the usual shorthand notation for time kT, yl(k) 
represents an instantaneousmeasure of the system at the sampling instant kT. Hence, the plant in Fkure 
1 can be regarded as having instantaneous measurements for outputs. It is well known that this system 
can be modeled at the sampling instants by the discrete state equations [ 1 , p. 1261 

- x(k+ 1)  = Ax(k) + Bu_(k) 

where 

and 

B = [ lTO(h)  dh] G . 

(3) 

(4) 

+(t) is the nxn state transition matrix. A and B are the nxn system matrix and the nxr control matrix, 
respectively, for the discrete state equations (1) and (2). 

A and B can be determined analytically using equations (3) through (5). An alternative approach, 

which is also quite suitable for numerical computation, is as follows [5]: +(t) and J @(X)dX can be 

expressed in the form of matrix exponential series as 

t 

0 
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and 
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( i +  l ) !  i = O  

respectively. From equations (6) and (7), 

T 
where I is an nxn identity matrix. Hence, J +(X)dA can be determined using equation (7) with t = T 

and this result substituted into equation (8) to get $(T). With these results, A and B can be found using 
equations (4) and (5 ) .  

0 

Now consider the plant in Figure 2, which is a generalization of the one in Figure 1 .  In addition to 
the instantaneous measurement vector yr(kT), the plant in Figure 2 has the measurement yF'(kT) gener- 
ated as follows. First, the continuous-6me output g(t) is sampled every T/N seconds. Every N samples 
are multiplied by the weighting matrices Hj, j = 0, 1 ,. . . ,N- 1, and then summed to generate the output 
- yF(kT), every T seconds. Functionally, this is equivalent to passing the discrete measurements generated 
every T/N seconds through a multi-input/multi-output MA process with coefficient matrices Hj, j = 
0,l ,..., N-1 [4]. The output of the MA prefilter is sampled every T seconds to generate yF(kT). Then, 
yF(kT) has subtracted from it E_u_[(k-I)T], where E- is a constant matrix, to produce the modified MA- 
prefiltered measurement vector yF'(kT). Finally, yF'(kT) is catenated with yr(kT) to form the total mea- 
surement vector - yT(kT). In Figure 2, CF is a pxn-output matrix and g(t) is; pxl vector. The weighting 
matrices Hj, j = O , l , .  . . ,N-1 are each qxp. Hence, yF(kT) and yF'(kT) are qxl vectors. Since yl(kT) is an 
mxl vector, it follows that - yT(kT) is an (m+q)xl vector. Sin& y[(k-l)T] is an rxl delayed input vector, 
E- is a qxr matrix. 

- 

Previously, Polites [6] showed that when 

E- = HP , (9) 

where H is a qx(Np) matrix given by 
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and p is the (Np)xr matrix 

P =  

the discrete state equations for the plant in Figure 2 become 

x(k+ 1 )  = A_x(k) + Bti(k) 

where D- is a qxn matrix given by 

D- = Ha 

and a is the (Np)xn matrix 
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~ From equation ( 1  3), 

where CT is an (m+q)xn matrix. 

E- and D- can be evaluated analytically using equations (3), (9) through (1 I ) ,  (14), and (15). An 
alternative approach, which can be either analytical or numerical, is as follows. Let t = -j(T/N), where j 

= 0, l  ,. . . ,N- 1 ,  and use equation (7) to determine J $(X)dh, j = 0,l ,. . . ,N-1. Substitute these results 

into equation (8) to get $[-j(T/N)], j = 0,l ,. . . ,N-1 . At this point, E- and D- can be found usingequations 
(9) through ( l l ) ,  (14), and (15). 

-j(T/N) 

0 

111. THE MORE-GENERAL IDEAL STATE RECONSTRUCTOR 

A general block diagram of the plant and the more-general ideal state reconstructor is shown in 
Figure 3. Notice the similarity between Figures 2 and 3. By virtue of this, if E. is given by equation (9), 
then equations (12) to (15) define the discrete state equations for the system in Figure 3 up to the output 
- yT(k). Proceeding further, - yT’(k) is related to - yT(k) by the expression I 

However, for equation (1 7) to be meaningful, (CTT CT)-’ must exist, and thi‘s occurs only when (CTT CT) 
is nonsingular. Recall that CT is an (m + q)xn matrix. If (m + q) b n and CT has maximal rank (i.e. rank 
n), then (CTT CT) is positive definite and therefore nonsingular [7 ] .  Hence, equation (17) requires that 
(m+q) 2 n and rank (CT) = n for it and the more-general ideal state reconstructor to be meaningful. 
Assuming this is the case, it follows from equations (12), (13), and (17) that the discrete state equations 
for the system in Figure 3 are 

. .  ’, . . 

Hence, the output of the more-general ideal state reconstructor, yT’(kT), exactly equals the true state of 
the plant, x(kT). Consequently, if one is given the plant in Figure 1 and modifies it to conform to Figure 
3, he can exactly reconstruct the state of the plant without adding any new states, eigenvalues, or 
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dynamics to it, since the plant equation (18) for the system in Figure 3 is identical to the plant equation 
(1) for the plant in Figure 1 .  In Figure 3, exact state reconstruction is achieved when E- is given by equa- 
tion (9) and CT is given by equation (16) where D- is given by equation (14). Of course, CT must satisfy 
the requirements previously imposed on it. 

One of these is that the dimensions of CT, namely (m + q)xn, satisfy the relationship (m + q) 2 n. 
This can also be written as q (n-m).Hence, the number of rows, q, in the weighting matrices Hj, j = 
0,l ,. . . ,N-1 must equal or exceed the number of states, n, in the plant state vector, x(t) or g(kT), minus 
the number of elements, m, in the instantaneous measurement vector yI(kT). Since q can be chosen 
arbitrarily, this requirement can be readily satisfied. The other requirement on CT is that it have rank n. 
One approach to satisfying this requirement is as follows. Recall that CT is defined by equation (16) 
where D- is defined by equation (14). Assuming CI is given, then one can choose D- so that CT has rank n 
and then find H to give the desired D-. One solution to the problem of finding H to give the desired D- is 
to let 

H = D- (aT a)-' aT . 

This follows from equation (14). However, like before, this requires that (aTa) be nonsingular. Recall 
that a is an (Np)xn matrix. If (Np) 2 n, or equivalently N 2 n/p, and a has maximal rank (i.e., rank n), 
then (aTa) is nonsingular. The first requirement can be easily satisfied because the number of weighting 
matrices N, where the weighting matrices are Hj, j = 0 , l  ,. . . ,N-1 , can be arbitrarily chosen so that N 2 
n/p. Recall that n is the number of states in the plant state vector, g(t), and p is the number of elements in 
the output vector z(t). 

In summary, the procedure to achieve exact state reconstruction with the more-general ideal state 
reconstructor is as follows. Given the plant in Figure 1 ,  modify it to conform to Figure 3 .  Choose the 
number of rows, q, in the weighting matrices Hj, j = O , l ,  ..., N-1 so that q 2 (n-m) where n is the 
number of states in the plant state vector, x(t) or x_(kT), and m is the number of elements in the instantan- 
eous measurement vector yI(kT). Choose the number of weighting matrices, N, so that N B n/p where p 
is the number of elementsin the output vector z(t). Assuming the (Np)xn matrix a, defined by equation 
(15), has maximal rank (Le., rank n), let H be given by equation (20) where D- is chosen so that the 
(m + q)xn matrix CT, defined by equation (16), has maximal rank (i.e., rank n). The weighting matrices 
Hj, j = 0,1, . . . ,N- 1 are found by partitioning H as in equation (10). Finally, let E- in Figure 3 be given by 
equation (9) where p is defined by equation (1 1). The discrete state equations for the system in Figure 3 
are now given by equations (18) and (19). Hence, the output of the more-general ideal state reconstruc- 
tor, - yT'(kT), exactly equals the true state of the system, x(kT). 

In the event there are no instantaneous measurements, then yI(kT) is a null vector, CI is a null 
matrix, and the more-general ideal state reconstructor in Figure 3 degenerates to the one presented in 
Reference 3. In this case, the methods described in Reference 3 for choosing the parameters in the ideal 
state reconstructor to achieve exact state reconstruction, as well as the one presented here, are applicable. 
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IV. AN EXAMPLE 

Consider the double integrator plant driven by a zero-order-hold as shown in Figure 4. Manipulat- 
ing the plant in Figure 4 into the state variable format of Figure 1 yields 

F =[' '1 , (21) 
0 0  

and 

c1 = [ l  01 . 

Figure 4.  Plant for the example. 

Since F, G ,  and C1 are nxn, nxr, and mxn matrices, respectively, it follows from equations (21) to (23) 
that n = 2, r =  1 ,  and m =  1 .  Using equations (21) and (22) and the formulas presented in Section 11, 

'I t 



A =  '1 7 

0 1  

and 

To exactly reconstruct the state of the plant in Figure 1 with the more-general ideal state recon- 
I structor, modify it to conform to Figure 5. Comparing Figures 3 and 5, it is apparent that 

CF = [ I  01 . 

Since CF is a pxn output matrix, it follows that p = 1 .  The requirement q 3 (n-m) can be satisfied by 
letting q = 1 .  The requirement N 3 n/p can be satisfied by letting N = 4. Now cx and p can be evaluated 
using equations ( I l ) ,  (15), (22), (24), (25), and (26), and are found to be 

and 

- 
1 0 

T 
1 -- 4 

2T 
1 -- 

4 
3T 

1 -- 4 - 
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respectively. In equation (27), eliminating any two rows forms a 2x2 matrix with nonzero determinant, 
assuming of course that T > 0. Hence, rank (a) = 2 = n and so (aTa) is nonsingular. Consequently, 
(aTa)-' aT exists and is found to be 

using equation (27). Since (aTa)-I aT exists, H can be given by equation (20) where D- needs to be 
chosen so CT has maximal rank. Recall that CT is an (m + q)xn matrix. In this example, m = q = 1,  n = 
2, and so CT is a 2x2 matrix. Since CT is defined by equation (16) where CI is the 1x2 matrix in equation 
(23) for this example, D- must be a 1x2 matrix. If D- is chosen to be 

D- = [0 11 , (30) 

I then 

and rank (C,) = 2 = n since det(CT) # 0. € ,ace ,  (CTTC,) is positive definite and therefore nonsingular. 
Consequently, (CT~CT)-I CTT exists and is found to be 

~ 

From equations (lo), (20), (29), and (30), 
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which reveals the weighting matrices Hj, j = 0,1,2,3.  From equations (9), (28), and (31), i 

E- = - 3T/8 . 

The more-general ideal state reconstructor is now completely defined for this example. 
i 

V. CONCLUSIONS AND RECOMMENDATIONS 

This paper has presented a more-general version of the ideal state reconstructor for deterministic 
digital control systems previously developed by Polites [3]. It is called an ideal state reconstructor 
because, unlike the popular state observer, it adds no new states, eigenvalues, or dynamics to the 
system, and, consequently, will not alter the stability of the system. In fact, adding the ideal state recon- 
structor to the system will not affect its plant equation in any way. It affects the measurement equation 
only. Also, if the plant parameters are known exactly, the reconstructed state will exactly equal the true 
state of the system, not just approximate it. The ideal state reconstructor is characterized by the fact that 
measurements prefiltered by a multi-input/multi-output moving-average (MA) process [4] are utilized in 
the state reconstruction process. It is called a more-general version because, unlike the original version 
[3], it allows for instantaneous measurements to supplement the MA-prefiltered ones in the state recon- 
struction process. The disadvantages of either version are that measurements must be made and calcu- 
lations must be performed more frequently than with the state observer. Fortunately, this is not the 
problem it was 20 years ago, considering the speed of today’s digital computers. 

1 

If the research in this paper is extended, two approaches are recommended. One is to explore 
advanced methods for choosing the parameters in the ideal state reconstructor. For example, the weight- 
ing matrices might be selected so the MA prefilter acts as a multi-input/multi-output low-pass filter for 
the case where measurement noise is present. The other approach is to investigate the robustness of the 
ideal state reconstructor and see how it compares with the state observer’s. Specifically, the following 
questions should be addressed. What effect do modeling errors in the plant have on the ideal state recon- 
structor, and how does this compare with the state observer? What effect do plant process and mea- 
surement noise have on the ideal state reconstructor and how does this compare with the state observer, 
or even the Kalman filter? How can the robustness of the ideal state reconstructor be improved? Increas- 
ing the number of weighting matrices, N, may be one possibility. Catenating the ideal state reconstructor 
with a state observer, or a Kalman filter, may be another. This might produce a composite estimator 
which is better than either the ideal state reconstructor, the state observer, or the Kalman filter alone. 
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